Advertisement
Help Keep Boards Alive. Support us by going ad free today. See here: https://subscriptions.boards.ie/.
https://www.boards.ie/group/1878-subscribers-forum

Private Group for paid up members of Boards.ie. Join the club.
Hi all, please see this major site announcement: https://www.boards.ie/discussion/2058427594/boards-ie-2026

e, the Exponential Function

  • 30-05-2014 06:03PM
    #1
    Closed Accounts Posts: 978 ✭✭✭


    Can anyone explain what e/exponential function/2.71828 informally is???

    Ive been on wikipedia, and Ive read my text books. But I can not explain what it is.
    I feel confident with logarithms and indices. But I cannot get my head around e.
    Any help is much appreciated.


Comments

  • Registered Users, Registered Users 2 Posts: 27 Peemaccee


    I just think of it as that number which when raised to the power, x, and differentiated remains the same. ie the rate of change of e^x is e^x. For a function that's cool!


  • Registered Users, Registered Users 2 Posts: 13,215 ✭✭✭✭bnt


    Another remarkable property of e is its link to complex analysis and fundamental trigonometry, through Euler's Formula. It ties different branches of mathematics together in mind-boggling fashion.

    In its pure form, fascism is the sum total of all irrational reactions of the average human character.

    ― Wilhelm Reich



  • Closed Accounts Posts: 978 ✭✭✭Fudge You


    Peemaccee wrote: »
    I just think of it as that number which when raised to the power, x, and differentiated remains the same. ie the rate of change of e^x is e^x. For a function that's cool!

    I know what you mean Peemacee. And I have learned this in my studies.

    What I meant in the op, was, what it is?
    Like for example, pi, in school I was thought its 3.14 or 22/7, and it is used for formulas involving circles, and then learned about the radians in trigonometry etc.. But I still never knew what pi was.
    But I was told that pi is the ratio of the circumference to the diameter, which is explained easily in wikipedia, and has a nice gif on the top right of the page.


  • Registered Users, Registered Users 2 Posts: 5,130 ✭✭✭Yakuza


    It's also possible to prove that [latex]e^{i \pi} = -1 [/latex].
    How's that for a mind-bender? :)

    Ok, so Latex doesn't seem to be working...the above should read e^(i * pi) = -1


  • Registered Users, Registered Users 2 Posts: 2,149 ✭✭✭ZorbaTehZ


    For something concrete you could say that it is the sum of 1+1/1!+1/2!+1/3!+1/4!+... or it is the limit as n tends to infinity of the expression (1+1/n)^n.


  • Advertisement
  • Registered Users, Registered Users 2 Posts: 3,038 ✭✭✭sponsoredwalk


    If pi being the ratio of the circumference to the diameter is intuitive to you, then e being "the epitome of universal growth" might also be intuitive:



    http://betterexplained.com/articles/an-intuitive-guide-to-exponential-functions-e/


  • Closed Accounts Posts: 7,669 ✭✭✭Colonel Sanders


    Isn't it also the case that if I randomly select k numbers between 0 and 1 until the sum of these k numbers is >1 then E[k]=e?


  • Registered Users, Registered Users 2 Posts: 27 Peemaccee


    To get a geometically view of where e comes from, the best you can do is to look at the area under the rectangular hyperbola (y=1/x) from an x value of 1.

    When the area is 1, we denote that vaue of x as e.



    From this simple fact, e spreads itself through out the world of maths.


Advertisement
Advertisement