Advertisement
Help Keep Boards Alive. Support us by going ad free today. See here: https://subscriptions.boards.ie/.
If we do not hit our goal we will be forced to close the site.

Current status: https://keepboardsalive.com/

Annual subs are best for most impact. If you are still undecided on going Ad Free - you can also donate using the Paypal Donate option. All contribution helps. Thank you.
https://www.boards.ie/group/1878-subscribers-forum

Private Group for paid up members of Boards.ie. Join the club.

Simple fraction query - is this right?

  • 24-07-2009 09:12AM
    #1
    Registered Users, Registered Users 2 Posts: 8,452 ✭✭✭


    [latex]\displaystyle \alpha = \frac{0.5 - a}{0.5 - b}[/latex]

    I want to see how alpha changes as a or b change. So here's what I did.

    First, assume a=0.3, graph b over the range of [0, 0.5). I get a standard upward-sloping asymptote. Fine.

    Now, assume b=0.3, graph a over the range of [0, 0.5). I get a downward-sloping linear relationship.


    So when you change the numerator you get a linear relationship, but when you equivalently change the denominator you get a non-linear relationship. Is this correct, or have I made a mistake in Excel?

    Can anyone provide an intuition for this?


Comments

  • Posts: 4,630 ✭✭✭ [Deleted User]


    Somebody correct me if I'm wrong, but I'm sure this is how it works:

    I'll take the case for b=0.3 first. If b=0.3, the bottom half of the fraction stays constant at 0.2. So, you have a basic linear relationship that is [latex]\displaystyle\alpha = \frac{1}{0.2}\ \mbox{a}[/latex]. You can see that this is a linear relationship because it's just stating that one variable equals 5 times another.

    In the first case, the top half will be kept constant at 0.2, but the varible part of it, b, increases (assuming that b increases and doesn't decrease), making the whole fraction tend towards negative infinity, producing an asymptote. If b decreases and a is kept constant the whole fraction will tend towards some constant.


  • Registered Users, Registered Users 2 Posts: 5,083 ✭✭✭RoundTower


    what JammyDodger said, except I think he meant + infinity


  • Registered Users, Registered Users 2 Posts: 8,452 ✭✭✭Time Magazine


    Thanks for the replies guys.

    I understood the mechanics of it alright, my intuition was that the inverse of something would take the same general functional form, and that's what prompted the thread.


  • Registered Users, Registered Users 2 Posts: 5,130 ✭✭✭Yakuza


    I'd approach it using calculus.

    assuming b is constant, then alpha is proportional to -a

    The first derivative of alpha w.r.t. a is -1, so you get an decreasing linear relationship.

    In the case where a is contstant, then alpha is proportional to 1/b (or b^(-1))

    The derivative of 1/b is -1/b², so your formula for the rate of change of alpha w.r.t. B is an inverse square.

    (These aren't exact derivatives, just showing the type of function you're dealing with).

    To find the exact derivatives, you'll need to use the chain and quotient rules respectively.


Advertisement