Advertisement
If you have a new account but are having problems posting or verifying your account, please email us on hello@boards.ie for help. Thanks :)
Hello all! Please ensure that you are posting a new thread or question in the appropriate forum. The Feedback forum is overwhelmed with questions that are having to be moved elsewhere. If you need help to verify your account contact hello@boards.ie

Taylor series approximation of 1/sqrt x

  • 30-11-2011 08:53PM
    #1
    Registered Users, Registered Users 2 Posts: 377 ✭✭


    Im trying to find the taylor series approx of 1/sqrt x, centered at a = 9

    So here are my derivatives

    f'(x) = -1/2 . x ^-3/2
    f''(x) = 3/4 . x ^-5/2
    f'''(x) = -15/8 . x ^-7/2
    f''''(x) = 105/16 . x ^-9/2

    f'(9) = -1/2 . 1/(3^3)
    f''(9) = 3/4 . 1/(3^5)
    f'''(9) = -15/8 . 1/(3^7)
    f''''(9) = 105/16 . 1/(3^9)

    So in trying to find a sigma expression for the taylor series I have the following -

    Σ (-1)^n . ###/2^n . 1/3^(2n+1) . (x-9)^n

    The ### is the part I cant get - As you can see it is coming out like this -
    n = 1 ===> 1
    n = 2 ===> 3
    n = 3 ===> 15
    n = 4 ===> 105
    n = 5 ===> 945

    How can I put this in terms of n so I can complete my taylor series representation?


Comments

  • Registered Users, Registered Users 2 Posts: 338 ✭✭ray giraffe


    n = 1 ===> 1
    n = 2 ===> 3
    n = 3 ===> 15
    n = 4 ===> 105
    n = 5 ===> 945

    How can I put this in terms of n so I can complete my taylor series representation?

    1 -> 1
    2 -> 1x3
    3 -> 1x3x5
    4 -> 1x3x5x7
    5 -> 1x3x5x7x9
    6 -> 1x3x5x7x9x11
    ...
    ...
    n -> 1x3x5x ... x(?)

    Hope that helps!


Advertisement